
A Microring as a Reservoir Computing Node:
Memory/Nonlinear Tasks and Effect of Input Non-ideality

Davide Bazzanella,∗ Stefano Biasi, Mattia Mancinelli, and Lorenzo Pavesi
Nanoscience laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy

(Dated: March 15, 2022)

The nonlinear response of an optical microresonator is used in a time multiplexed reservoir com-
puting neural network. Within a virtual node approach combined with an offline training through
ridge regression, we solved linear and nonlinear logic operations. We analyzed the nonlinearity
of the microresonator as a memory between bits and/or as a neural activation function. This is
made possible by controlling both the distance between bits subject to the logical operation and the
number of bits supplied to the ridge regression. We show that the optical microresonator exhibits
up to two bits of memory in linear tasks and that it allows solving nonlinear tasks providing both
memory and nonlinearity. Finally, we demonstrate that the virtual node approach always requires a
comparison of the reservoir’s performance with the results obtained by applying the same training
process on the input signal.
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I. INTRODUCTION

Nowadays, artificial neural network (ANNs) are able
to carry out tasks of remarkable complexity and abstrac-
tion. These statistical models are usually created by
analysing extensive datasets or by repeating a training
procedure a substantial number of times. Thanks to the
recent exponential increase in computational power of
general purpose accelerators, derived from graphic pro-
cessing unit (GPU) architectures, it has been possible to
create and emulate ANNs of increasing size, in a shorter
time and more efficiently [1, 2]. However, a fundamental
difference between ANNs and common computers still re-
mains: in the former, computation occurs in parallel at
each node, while in the latter information is elaborated in
CPUs and GPUs only. Due to this discrepancy, comput-
ers are not the most energy efficient means for creating
and running ANNs.

In order to overcome these limitations, hardware im-
plementations of ANNs with different combinations of ar-
chitectures and physical substrates have been attempted
[3–11]. Reservoir computing (RC) with photonics is
an interesting approach to the matter, as it combines
the bandwidth, parallelism, and low energy consumption
proper of photonics and the weak requirements of RC
based ANNs [12]. In these ANN, a recurrent untrained
network of randomly interconnected nonlinear neurons
(the reservoir) is interfaced through trainable connec-
tions with a single layer of output neurons (the output
perceptron). In photonics, the reservoir that increases
the dimensionality of the RC input data can be imple-
mented either by a big number of simpler nodes [13] or
by a single much more complex and highly nonlinear el-
ement [14]. This is especially important for integrated
photonics, whose fundamental blocks have limited cas-
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cadability.
An approach to photonic RCs aims at using a single

photonic device to create the reservoir, whose single out-
put is sampled at different times, creating a set of virtual
nodes. This method is called time multiplexing, and re-
quire memory storage of the virtual nodes. Often, the
output layer is carried out offline, after the optical read-
out has been converted to digital signals [5, 14, 15]. The
final network output is computed as a weighted sum of
the status of the virtual nodes. Therefore, this RC imple-
mentation can be easily trained by using a simple ridge
regression. This procedure allows the study of promis-
ing optical reservoir, without the additional burden of
integrating the output regression layer.

Within this approach particular care should be placed
on the network testing phase when binary inputs are
used. In fact, the optical binary input signal differs from
the ideal binary input because of the non-ideal response
of the optical bit generation stage, usually composed by
a continuous wave (CW) laser and one or more electro-
optic (E/O) modulators. For this reason, as we will show
in this article, it is fundamental to compare the perfor-
mance of the RC system to that of the isolated readout
layer applied directly to the optical input.

In this work, we studied the implementation of a sil-
icon microresonator as a reservoir. Referring to our re-
cent work [16], a binary time sequence of bits is injected
into the system at different bitrates, average powers, and
detuning with respect to the resonant frequency. As a re-
sult, the nonlinearity of the microresonator, which follows
the free carrier and temperature dynamics [17], encode
the information in the output response. The free carrier
recombination and the temperature cooling provide the
intrinsic fading memory to the network. Note that here,
at difference with [16], we use a single pulsed input optical
signal. Training the system by means of an off-line ridge
regression, allows treating different binary tasks, isolat-
ing the role of the nonlinearity of the microresonator on
the fading memory between bits and on the nonlinearity
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(activation function) imprinted on the output response.
The paper is organized as follows. To begin with, we

present in Section II the basic principle of the network,
explaining the implementation of a microresonator/bus
waveguide system as a reservoir. We describe the encod-
ing of information into the input signal and the training
process. We then present the experimental realization in
Section III, where we discuss the samples and the exper-
imental setup, showing how the data were acquired. In
Section IV we show the experimental results obtained in
the test process, discussing the role of the nonlinearity
induced by the microresonator. Finally, we summarise
our main results in Section V.

II. THEORY AND BASIC PRINCIPLE

A single microresonator in the add-drop configura-
tion is used as a reservoir, implementing virtual nodes
through the time multiplexing technique [18]. The num-
ber of virtual nodes Nv is determined by the bit dura-
tion Tb and the virtual node temporal separation (δt), i.e.
Nv = Tb/δt. Note that in this case, Tb is determined by
the used bit rate and is not connected to any delay-loop
as in the classical architectures [19, 20].

The input signal is an optical binary sequence IN of
length N , encoding the logical binaries 0 and 1 with the
lowest and maximum optical intensities of a single fre-
quency pump laser, respectively. The input optical signal
is then a sequence of bits bij , each of which is composed
by a Nv number of samples ij , or virtual nodes:

IN =
(
bi1, . . . , b

i
j , . . . , b

i
N

)
(1)

bij = (i1, . . . , ij , . . . , iNv ) . (2)

The possibility of varying both the frequency and
power of the pump laser allows to study the effects of the
microring resonator nonlinear response [17]. This non-
linearity, applied to the input signal, is due to either or
both the dynamics of the free carrier population density
and the temperature within the ring’s waveguides. The
pump laser generates free carriers through Two Photon
Absorption (TPA) which, in turn via free carrier disper-
sion, generates a blue shift of all the resonant frequencies
of the microresonator. On the other hand, the temper-
ature of the microresonator increases due to free carrier
relaxation and light absorption in the waveguide mate-
rial. This induces a red shift of all the resonant frequen-
cies due to the thermo-optic effect. The two effects are
characterized by different relaxation times and power de-
pendences. Then, depending on the frequency detuning
(difference between the pump laser frequency and the mi-
croring resonant frequency), the input power and the bit
rate, one of these phenomena can overcome the other or
both can occur leading to an unstable scenario charac-
terized by a self-pulsing regime [21, 22]. As a result, such
nonlinearities define the connection between the virtual
nodes [16], providing both the memory capability and the
nonlinearity to the reservoir.

AND 0 1
0 0 0
1 0 1

OR 0 1
0 0 1
1 1 1

XOR 0 1
0 0 1
1 1 0

TABLE I: Truth table for AND, OR, and XOR operations.

The output bit boj is measured at the output port of
the system, i.e. the microresonator transmitted light is
detected and sampled each δt yielding the virtual nodes
status oj . These output bits are arranged in the hidden
nodes matrix:

X =
(
boT1 , . . . , boTj , . . . , boTN

)
(3)

boj = (o1, . . . , oj , . . . , oNv
) , (4)

where each column boj contains Nv virtual nodes. Then,
offline, the RC output Y is obtained by a simple matrix
multiplication of the hidden nodes matrix with a weight
matrix W , i.e. Y = XW

The reservoir training is obtained by determining the
weight matrix W̃ , which allows predicting the target YT .
This problem is solved by regularized least squares (ridge
regression), exploiting the fitrlinear algorithm of Mat-
lab. Here, the regularization parameter λ is defined by
a 5-fold cross validation, so that the result of the ridge
regression is the matrix W̃ which minimizes the regular-
ized least square error.

The binary tasks studied are the logical operations
AND, OR, and XOR, whose truth tables are reported
in Table I and which are carried out on the present bit
with a bit in the past. To explicit the bits on which the
operation is carried out, we use the following notation:
“LO n1 with n2 R-bit”, where LO is the logical opera-
tion, n1 is the distance between the bits on which the LO
is performed (the present and the past bits), and n2 is
the number of bits, starting from the present one, pro-
vided to the ridge regression (the R-bits). For example,
“AND 2 with 2 R-bits” means to perform an AND logical
operation between the bij and bij−2, providing the virtual
nodes of boj and boj−1 to the ridge regression algorithm.
For each task the following cases were investigated:

• logical operation between bits bij and bij−1, provid-
ing to the ridge regression the bit boj or boj−1 & boj ,
see Fig. 1a;

• logical operation between bits bij and bij−2, provid-
ing to the ridge regression the bit boj or boj−1 & boj
or boj−2 & boj−1 & boj , as shown in Fig. 1b;

• logical operation between bits bij and bij−3, provid-
ing to the ridge regression the bit boj or boj−1 & boj
or boj−2 & boj−1 & boj or boj−3 & boj−2 & boj−1 & boj , see
Fig. 1c.

Varying the distance between the bits subject to the log-
ical operation allows testing the memory imprinted on
the output signal by the microresonator. We can supply
to the ridge regression the current bit only, so that the
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FIG. 1: Sketch representing the three cases on which we
tested the logical operations. n1 indicates the distance
between the bits on which the logical operation (LO) is

performed and n2 is the number of bits provided to the ridge
regression in the training procedure. Note that the flow of
bits is such that the past bits (bij−n1

) are processed by the

microresonator before the present bit (bij), i.e. the bit flow is
inverted with respect to the time flow which is indicated in

the figure.

system has to provide the memory to the regression, or
we can make all the bits in the operation directly avail-
able to the regression. In the last scenario, the attention
can be focused on the nonlinearity of the microresonator
imprinted on the output signal.

Despite the apparent simplicity of the logical operation
AND, OR and XOR, these tasks unveil the main charac-
teristics of the reservoir: the nonlinear transformation of
the input and the presence of fading memory [16, 23–25].
AND and OR, are linear tasks, and therefore, do not re-
quire a nonlinear response for their solution. However,
in order to solve these linear tasks it is necessary for the
system to provide memory between the bits. This allows
isolating the role of optical nonlinearity on the memory
between the distinct bits. Differently, the solution of the
logical XOR requires both: nonlinearity of the response
and memory between the different bits considered in the
task. As a result, we can distinguish between the two
contributions by providing or not providing memory to
the ridge regression during the training process.

III. SAMPLES AND EXPERIMENTAL
REALIZATION

The device under test (DUT) was a microring res-
onator with a radius of 7 µm in the add-drop configura-
tion, which has been fabricated at the CEA-Leti facility
on a SOI (silicon-on-insulator) wafer. The top-view of
the sample is shown in the sketch of Fig. 2a. Briefly, the
DUT is composed by single mode channel silicon waveg-
uides with a width and height of 450 nm and 220 nm, re-
spectively. Two bus waveguides are point-coupled to the
microring with a gap of 200 nm. The normalized trans-
mittance spectrum of a resonance measured at the drop
port is shown in Fig. 2b. From this response it is possible
to estimate a quality factor of about 6×103 at a frequency
of 193.5 THz. As a result, the photon lifetime in the cav-
ity is equal to 4.93 ps [26]. Differently, the free carrier
lifetime τFC is about a few nanosecond, as reported in
literature for similar structures [27–30], while the thermal
relaxation time is about 100 ns [31, 32]. It is worth not-
ing that this τFC is about one order of magnitude shorter
than the value estimated in our works [16, 17], where
τFC = 45 ns on IMEC fabricated microresonators. This
means that the transient phenomena occur at a temporal
scale 10 times shorter in our DUT with respect to what
was found in [16]. Indicatively, at 8 dBm the response of
these DUTs can be considered linear at all frequencies.
Increasing the average input optical power, the nonlinear
effects become more significant.At the highest values of
input power, earlier for small detuning values and later
for larger detunings, self-pulsing happens. For example,
an input signal in resonance with the ring with an average
power of 16 dBm triggers the self-pulsing effect. The pos-
sibility of varying the frequency of the pump laser from
negative to positive detunings, allows forcing a partic-
ular nonlinear effect. In fact, negative detuning induces
free carriers through TPA, while positive detuning favors
the thermo-optic effect. However, with a fixed input fre-
quency at high input power, the microresonator exhibits
a nonlinearity that is effectively an interplay between the
two effects [16].

The experimental setup is sketched in Fig. 2c. The
pump is a CW tunable laser, which operates in a range
spanning from 191.5 THz to 196.25 THz (CWTL). Its
intensity is modulated by an electro-optic IQ modula-
tor (EOM), controlled by a 65 GSa/s Arbitrary Wave-
form Generator (AWG), in order to create the desired
binary sequence. This signal passes through a fiber-
optic splitter which allows detecting the input pump by
a fast photodiode detector (PD1). The remaining of the
pump is adjusted in polarization by a polarization con-
trol (PC), is amplified by an Erbium Doped Optical Am-
plifier (EDFA1), and attenuated again to obtain the re-
quired power by an electronic Variable Optical Attenu-
ator (VOA1). The resulting signal is fed to the sample
through the coupling between a single mode fiber and
the input grating coupler. Similarly, another single mode
fiber is coupled to the output grating coupler to read the
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FIG. 2: (a) Sketch of the microring resonator in the add-drop configuration. (b) Normalized transmission spectrum around
the resonance frequency. The detuning is the frequency difference between the laser frequency and the microring resonat

frequency of 193.5 THz. (c) Diagram of the experimental setup. CWTL: Continuous Wave Tunable Laser, AWG: Arbitrary
Waveform Generator, EOM: Electro-Optic Modulator, PD: Photodetector, PC: polarization control, VOA: Variable Optical

Attenuator, EDFA: Erbium Doped Optical Amplifier, BPF: Band Pass Filter, Pc: Personal computer.

output signal. A correct alignment is ensured by a three
axis linear piezoelectric stage on both the input and out-
put. The signal collected at the output is injected into a
second electronic Variable Optical Attenuator (VOA2),
re-amplified by a second Erbium Doped Optical Ampli-
fier (EDFA2), and cleaned from the optical ,noise with
a tunable band-pass filter (BPF). The resulting output
is detected by a second photodiode (PD2). At the end,
a 4-channel 40 GSa/s oscilloscope monitors and records
the input and output optical waveform. A Personal com-
puter (Pc) elaborates the traces, and performs an offline
training and test of the network by using Matlab.

The input signal injected into the microresonator con-
sists of a Pseudo Random Binary Sequence (PRBS)
of order 8 and length 255, repeating indefinitely. Its
characteristics can be changed by varying three distinct
variables: bitrate, detuning (input minus resonant fre-
quency) and average power. Precisely, the variables span
over the following values:

• bitrate: 20, 40, 50, 80, 100, 200, 250, 400, 500, 800,
1000, 2000, and 4000 Mbps;

• detuning: −30, −25, −20, −15, −10, −5, 0, 5, 10,
15, 20, 25, and 30 GHz;

• input Power: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
and 18 dBm.

For each combination of bitrate, incident power, and fre-
quency detuning, the input and the output optical signals
are acquired. The second amplification stage, consist-
ing of the EDFA2 and of the VOA2, keeps constant the
average power at PD2, avoiding marked changes in the
signal-to-noise ratio (SNR), which could otherwise com-
promise the performance comparison between different
combination of parameters.

In the time multiplexing approach, knowledge of the
input is crucial to verify that the experimental apparatus
alone is not able to solve the task. Indeed, both the sig-
nal generation and detection stages can distort the ideal
PRBS by imprinting spurious nonlinearities and adding
unwanted memory due to their finite electronic band-
width. Therefore, the oscilloscope records both the input
(the PD1 signal) and the output (the PD2 signal) optical
waveforms, with a fixed sampling rate of 20 GSa/s. As
a result, the sampling rate of the oscilloscope defines the
number of samples in each bit for each bitrate. Specifi-
cally, it spans from a maximum of 1000 to a minimum of
5, for 20 Mbps and 4000 Mbps, respectively.
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The acquired samples per bit are re-binned to obtain
Nd

v virtual nodes: they are divided into the desired num-
ber of bins and for each ones is performed the average.
For example, assuming a Nd

v = 10, each bit would have
10 virtual nodes obtained as follows:

1. 10 samples obtained by re-binning the experimental
data, at input bitrates from 20 Mbps to 1000 Mbps;

2. all the 10 samples acquired, at 2000 Mbps;

3. the values of the five samples acquired and zero for
the remaining 5 nodes, at 4000 Mbps.

The minimization of the regularized square error, i.e.
the solution of the system YT = XW̃ , is performed on
both the input and the output signals by processing them
as a function of the maximum desired number of virtual
nodes (Nd

v ).

IV. EXPERIMENTAL RESULTS

For each combination of the three input variables (see
Section III), we performed the training for different log-
ical operations on both the input and the output optical
signals, ie. we detected the optical data and then we ap-
plied the ridge regression on the digital data. When the
training is performed on the output optical signal we are
using the whole microring based RC network. We stud-
ied a number of virtual nodes equal to 3, 4, 5, 10, 15,
20, and 30. The tasks have been implemented following
the cases reported in Section II. Then, the performance
of the network has been assessed by estimating the bit
error rate (BER).

Among the several results, we selected a few instruc-
tive cases, which reveal the effect of the nonlinearity of
the microring resonator. We report the results separat-
ing them according to the logical operation. In each case,
we show three contour maps as a function of the input
bitrate and the frequency detuning. The first map shows
the best value of the BER (BERb

out) obtained by the RC
network with the input power which ensures the best
performance. The second map shows the lowest value
of input power at which BERb

out is achieved. The third

one shows the ratio RB between the BERb estimated
when the ridge regression is applied on the input optical
data (BERb

in) or on the output optical data (BERb
out):

RB = BERb
in/BERb

out. The color code for the ratio RB
is given on the map with two different color-ranges: one
from blue to yellow, the other from black to white. The
first highlights where the microring introduces an im-
provement of the performance. Specifically, the yellow
indicates a better result of the RC network, and therefore,
defines the regions of performance improvement given by
the microring nonlinearity. The other color range is a
gray scale that shows where the results of the RC are
worse than barely performing the ridge regression on the
input optical data. In particular, the black color indi-
cates that RB is equal to one, i.e. the task is solved with

the same BER either when the input optical data are
processed or when the output optical data are processed,
while the gray and white colors indicate regions in which
BERb

out is worse than BERb
in. This means that the non-

linear response of the microring does not introduce any
advantage but it is only detrimental. For the sake of
clarity, all the maps are represented with a logarithmic
(log10) scale.

Moreover, in the map of the BERb
out we define with

red dots the points where the results reach the statisti-
cal limit. The same points are replicated in the third
map, using empty red dots and crosses when the statis-
tical limit is reached by processing the input and output
optical signals, respectively.

A. Linear logical operations: AND and OR

Logical AND and OR tasks are linearly separable (see
Table I for the truth tables), hence the nonlinearity of
the microresonator provides only the memory of the past
bit for the operation. As a result, varying the distance
between the bits subject to the logical operation allows
testing the memory capability of the network.

1. AND 1 with 2 R-bits and Nd
v = 5

The “AND 1 with 2 R-bits” is a linear task where we
provide both bits - the current bit and the past one -
to the ridge regression. In this case, we expect to be
able to solve the task both by the RC and by processing
only the input optical signal. The results confirm these
expectations and are shown in Fig. 3.

The system is in fact able to solve the task without er-
rors in almost all configurations, as we can see from the
top panel. However, we can observe a slight deterioration
of the the BER in some isolated regions, probably due to
lower SNR (signal to noise ratio). The absolute minimum

BERb value is equal to 10−3.4 and the statistical limit
is achieved at all input bitrates apart from 2000 Mbps.
Looking at the power map (see middle panel), there is

no clear dependence of the BERb on the frequency de-
tuning. Furthermore, the best BER results are found at
low values, whereas, the lowest performance is character-
ized by high powers. As expected, the bottom map shows
that the performance of the RC is equal to that achieved
by processing only the input optical signal almost every-
where. For bitrates around 2000 and 4000 Mbps BERb

out

is even worse than BERb
in. In these cases, the microres-

onator distort the information carried by the input and
it is, therefore, detrimental to the task resolution.
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FIG. 3: Maps as a function of the frequency detuning and
input bitrate for AND 1 with 2 R-bit and Nd

v = 5. (top)
BER estimation from the RC network at the power which

ensures the best network performances; (middle) the power
at which the BERb

out values in the first panel are achieved;
(bottom) the ratio between BERb

in and BERb
out. All the

values are given in a logarithmic scale.

2. AND 1 with 1 R-bit and Nd
v = 5

Similarly to the previous example, “AND 1 with 1 R-
bits” is a linear task. However, differently than before,
we provide now only the current bit to the ridge regres-
sion. The nonlinearity of the microring resonator, then,
must provide memory of the past bit to the regression.
Indeed, the past bit has been injected into the microring
resonator before the current bit and should be stored in
the microring resonator, as shift in temperature or free
carrier population, to influence the current bit transmis-
sion. The results are shown in Fig. 4.

The best BER estimated (top panel) shows low val-
ues for a vast portion of the bitrate-detuning parame-
ter space, with an absolute minimum of 10−3.4. More-
over, the statistical limit (red dots) is reached at sev-
eral frequency detuning values for bitrates ranging from
20 Mbps to about 500 Mbps. From this map alone we
cannot infer a clear dependence of the BERb

out as a func-
tion of the frequency detuning. On the contrary, the
power at which BERb

out is obtained (see middle panel)
shows that at zero detuning the system solves the task
even at low power, while away from the resonance it re-

FIG. 4: Same maps of Fig. 3 for AND 1 with 1 R-bit and
Nd

v = 5.

quires higher incident powers. Lastly, from the bottom
panel, showing the ratio RB, we can observe wide re-
gions of marked improvement in the performance of the
RC network with respect to processing only the input
optical signal. This improvement extends roughly from
20 Mbps to 500 Mbps and reaches about two orders of
magnitude in the yellow region between 40 and 50 Mbps.
On the other hand, for higher bitrates (approximately
from 1000 Mbps to 4000 Mbps) the results provided by
the RC network equals those obtained by processing only
the input optical signal (dark gray and black regions).
The extreme case occurs at 4000 Mbps, where the ridge
regression achieves the statistical error limit on process-
ing the input optical signal, only. This confirms what
we have seen in the previous case, where at high input
bitrates the nonlinearity distort the signal, and there-
fore, it does not play a memory role. Furthermore, this
verifies the presence of unwanted memory in the signal,
due to either the generation or the detection stages, even
capable, in this extreme case, of solving the task.

3. AND 2/3 with 1 R-bit and Nd
v = 5

By increasing the distance between the bits on which
the logical AND operation is performed, more memory
capacity of the reservoir is required. Figure 5 shows the
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FIG. 5: Same maps of Fig. 3 for AND 2 with 1 R-bit and
Nd

v = 5.

results for AND 2 with 1 R-bit and Nd
v = 5.

In this case, the map of the BERb
out (top panel) ex-

hibits a marked region where the RC network solves the
task. In particular, there is a minimum BER of about
10−2 at a bitrate of 100 Mbps and a frequency detuning
equal to −20 GHz. The map in the middle panel of Fig. 5
shows that this value is obtained at powers which ensure
a nonlinear response of the microring resonator. It is
worth noting that the RB ratio map (bottom panel) also
highlights this area of better performance. Specifically,
the maximum performance improvement shows a ratio of
about 101.5 at a bitrate of 100 Mbps. It seems that the
best value of the RB occurs in the presence of a nonlinear
effect related to free carrier dynamics. In fact the best
performance of the output is obtained around 100 Mbps
at negative detuning with approximately 15 dBm.

Moreover, there is a small region where the RC network
performs slightly better than the bare processing of the
input optical signal for bitrates of 1000 and 2000 Mbps,
but the improvement is extremely small (100.1). It is
important to notice that the area of lower RB coincides
to an area of low input power. This suggests that in these
cases the system nonlinearities are detrimental.

From these results, we find that the microring res-
onators used as a reservoir exhibits a memory of two bits.
Interestingly, increasing the number of virtual nodes, the
regions where the BERb

out is lowest remain unchanged

while the minimum BERb value progressively decreases
until it reaches a value of about 103.4 for 30 virtual nodes.
In this case, RB gets to a maximum value of 10−2.6.

In the AND 3 with 1 R-bit and Nd
v = 5 task, the ab-

solute value of BERb
out reaches a minimum value of ap-

proximately 10−1 at a bitrate of 100 Mbps and −20 GHz
detuning where RB equals to 100.26. It is clear that the
nonlinear response of the microresonator is not sufficient
to guarantee the memory capacity needed to solve the
3-bit delay task.

B. Nonlinear logical operation: XOR

The XOR logical operation is not linearly separable
and, therefore, it cannot be successfully solved using only
the ridge regression. Furthermore, the solution of the n-
bit delay XOR requires also a memory capability corre-
sponding to a n-bit delay between the input bits.

1. XOR 1 with 1 R-bit and Nd
v = 5

The XOR 1 operation requires both nonlinearity and
memory, however, because it is carried out on two con-
tiguous bits, the memory may come from the inter-
symbolic interference already present in the input optical

FIG. 6: Same maps of Fig. 3 for XOR 1 with 1 R-bit and
Nd

v = 5.
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signal. The values of RB should clarify the role of the
microring in the RC network. The results are shown in
Fig. 6.

The map of the best BER (top panel) shows an abso-
lute minimum value of about 10−1.7 and exhibits a region
of low values extending for negative detuning frequencies
across all the bitrates. Negative detuning is the region
where the free carrier nonlinearities are better excited
in the microring [16, 21]. Where thermal nonlinearities
are excited predominantly and thermal bistability or self-
pulsing occur, i.e. positive detuning or high input power,
yields BER degradation. The power map (middle panel)
exhibits relatively smooth surface, with lower values of
power close to the resonance and higher values far from
it. Interestingly, the RC network solves the task with low
BER when the input bit rate is inversely proportional to
the free carrier lifetime (∼ 250 Mbps), even though for
large input power for positive detunings. The best RB
are obtained at several bitrates for negative frequency de-
tunings. On the contrary, for frequency detuning larger
than −20 GHz to 30 GHz and input bitrates higher than
800 Mbps, we can observe a region where BERb

out is larger

than BERb
in, i.e. the microring resonator nonlinearites do

not improve the results of the ridge regression applied on
the input optical signal. Analyzing the RB, it looks like
that, by exploiting the microresonator as a memory and
nonlinear activation function, there is a clear improve-

FIG. 7: Same maps of Fig. 3 for XOR 1 with 2 R-bit and
Nd

v = 5.

ment in performance for negative detunings compared to
the case where we just use the inter-symbolic interfer-
ence and the square module of the response. The latter
scenario corresponds to analyzing only the input optical
signal.

2. XOR 1 with 2 R-bit and Nd
v = 5

Considering the same XOR operation, but with both
bits supplied to the ridge regression, we provide the mem-
ory needed to solve the operation and the reservoir has
only to provide the nonlinearity. The results are shown
in Fig. 7.

In this case, the results are much better than in the
XOR 1 with 1 R-bit case. The top panel shows a wide
region, between 20 and 400 Mbps, in which the the BERb

reaches very low values, with an absolute minimum of
10−3.4. For bitrates of 500 Mbps and above, we can ob-
serve a region where the BERb value does not reach low
values (from 10−1 to 10−2). The middle panel is similarly
divided in two regions, where the one associated with low
BERb values presents higher input power and the one as-
sociated with higher BERb values presents lower input
power. It is clear that the system is able to exploit the
microring nonlinearities in order to solve the task in the
region of high input power, but not in the region of low
input power. In this situation, large input powers do not
improve the performance calculated on the microring res-
onator transmitted signal. Again, in the region where the
RC network is effective in solving the task, the RB shows
a performance increase achieving a ratio of about 102.7.
Also for this task, we observe that negative detunings are
better and allows reaching the statistical limit of the solu-
tion as highlighted by the red dots and crosses in the top
and bottom panels, respectively. Thus, also in this case,
free carrier nonlinearities are used by the RC network.

3. XOR 2-3 with 1-2-3 R-bit and Nd
v = 5

Performing the XOR operation on bits separated by
two or three bits requires even more memory than the
XOR 1 operation and avoid the problem of inter-symbolic
interference on the input optical signal. Figure 8 shows
results of the XOR 2 operation by showing the map of
the ratio between BERb

in and BERb
out when supplying

one, two, and three bits to the ridge regression. When-
ever BERb

out < BERb
in, the task is solved by the nonlin-

earity of the microring resonator. Note that for the 3
R-bit result, both the bits used in the XOR operation
are provided to the ridge regression.

In the first case (top panel), when only the information
contained in the current bit is used, the RC network is
not able to improve over the bare processing of the in-
put signal. The maximum RB performance increase is
100.2. Moreover, apart from the zone contained between
40 and 200 Mbps and with negative frequency detuning,
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FIG. 8: Map of the ratio between the input and output
BERb as a function of the frequency detuning and bitrate.
Specifically, the top, middle and bottom panel shows the
experimental results for Nd

v = 5 considering the logical
operation XOR 2 with 1R-bit, XOR 2 with 2R-bit and XOR

2 with 3R-bit, respectively.

i.e. where the free carrier nonlinearity are effective, the
map shows a slight performance decrease.

Interestingly, by providing the ridge regression also
with the previous bit (n2 = 2), the region showing perfor-
mance increase widens and its maximum value becomes
about 100.4 at a bit rate of 100 Mbps and frequency de-
tuning of −25 GHz. Similarly as before, a second region
showing good results appears for negative detuning at
400 and 800 Mbps. By providing all three bits to the ridge
regression, the current bit and the previous two, the per-
formance improves conspicuously reaching a maximum
ratio RB of 101.1 at 100 Mbps, −25 GHz. It looks like

XOR 2 1 R-bit 2 R-bit 3 R-bit

BERb
out 10−0.7 10−0.9 10−2.6

RB 100.2 100.4 101.1

TABLE II: Value of the BERb
out and the corresponding

average input optical power at 16 dBm, obtained for a
detuning of −25 GHz and a bitrate of 100 Mbps.

that the network efficiently exploits only the nonlinear
dynamics of the free carriers in order to solve the logical
operation. Table II, allows comparing the RB ratio and
BERb

out with each other for 1,2,3 R-bit. In particular, it

reports the BERb
out and the RB ratio for a PRBS signal

at a bitrate of 100 Mbps, with an average power equal
to 16 dBm, generated by a pump laser at a frequency
detuning of -25 GHz.

C. Discussion

The results of “AND 1 with 2 R-bit” provide us the
baseline for the discussion: we verify that the ridge re-
gression is able to correctly solve a linear task when pro-
vided with the necessary inputs. We do this both us-
ing the input optical signal and the reservoir transmit-
ted output optical signals. We observe that the regres-
sion reaches the statistical error limit almost everywhere.
The task “AND 1 with 1 R-bit” requires to carry the in-
formation of the past bit to the current one, exploiting
the response of the microring resonator. It appears that
this indeed happens in a vast region of the parameter
space, mostly for bitrates up to 500 Mbps, and at every
frequency detuning, although at different input powers.
Similarly, also the “AND 2 with 1 R-bit” task is solved by
the RC network, but not at the same performance level as
the previous task and for a limited set of parameters. We
can therefore summarize the results of the linear tasks by
saying that the system is able to provide memory of 1 bit
in the past in almost every configurations, memory of 2
bits in past for a restricted set of parameters, and is not
able to provide memory of three or more bits in the past.
These considerations are validated by the analysis of the
maps of RB, which verify that this memory comes indeed
by the microring resonator response and not from nonlin-
earities already imprinted on the input optical signal by
the EO conversion. The extension of the memory to just
two bits in the past must be seen as the maximum in-
trinsic performance of the microresonator/bus waveguide
system. It does not mean a binding limit. In fact, more
memory can be provided a priori by modifying the en-
coding of virtual nodes [33], or by exploiting a hybridized
space-time approach [5]. In this latter, one can vary the
reservoir topology, e.g., by coupling spirals to the system,
and thus, providing temporal memory between n bits in
the past.

The nonlinear tasks, instead, require both memory and
nonlinearity. Comparing the results of “XOR 1 with 1 R-
bit” and “XOR 1 with 2 R-bit”, we observe that the sys-
tem struggles to deliver both. In fact, if providing only
the current bit to the ridge regression leads to a BERb

of around 10−1.7 and only for specific combination of the
system parameters, with both bits the ridge regression is
able to reach the statistical error limit on a wide region.
Also in this case, best results are achieved when free car-
rier nonlinearities are used (i.e. negative detuning and bit
rates of 100 Mbps). Moreover, the same can be observed
by comparing the maps of RB for “XOR 2” with 1, 2,
and 3 R-bits. It is worth noticing that the experimental
measurements are based on the nonlinear response en-
coded within a single signal of a pump laser. As a result,
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bits that have a zero value in the PRBS trace do not
carry optical energy into the microresonator. Therefore,
most of the virtual nodes associated with them are sam-
pled within the background noise. This problem can be
solved by exploiting a pump and probe experiment, and
then, nonlinearly imprinting the information on a second
signal [16]. However, in this work we are not interested
in the absolute performance, but rather in the relative
trend of the bit rate for the logical operations as a func-
tion of the number of bits supplied to the ridge regression
in the training procedure.

These results show that both thermal and free car-
rier nonlinearities impact the performance of the micror-
ing reservoir. Specifically, we can see a generalised im-
provement of RB for bitrates from 100 Mbps to 400 Mbps.
These values are close to the inverse of the free carrier
lifetime ∼ 1/τFC ∼ 200 MHz to 500 MHz. A similar
scenario has already been reported by [16], where the
higher free carrier lifetime of 45 ns gave rise to best per-
formance around 20 Mbps in the XOR 1 with 1 R-bit
task. On the other hand, the interplay of free carrier
and thermal nonlinearities, whose lifetime is ∼ 1/τth ∼
10 MHz to 20 MHz, do not deteriorate the device per-
formance if the system is not in a bistable regime. We
cannot, however, observe the effect of the thermal nonlin-
earities alone as it would arise below 20 Mbps. It is good
to point out that the photon lifetime, and therefore, the
charge and discharge of the microresonator, does not pro-
vide memory between the bits. In fact, its effect should
occur around a frequency of ∼ 200 GHz.

V. CONCLUSION

In this paper, a microresonator coupled to a bus waveg-
uide is exploited as a reservoir in a RC network. The
input information is encoded exploiting the temporal ap-
proach via virtual nodes, and thus, modulating the am-
plitude of a single pump laser. The system is trained of-
fline through a ridge regression. By injecting into the bus
waveguide a Pseudo Random Binary Sequence dependent
on the bitrate, frequency, and average power, we studied
linear and nonlinear logic operations, such as AND and
XOR. The solution of the first tasks requires memory
between the bits on which the logical operation occurs,
while that of the second ones requires both: memory and
nonlinearity understood as an activation function. Here,
we show that a structure as simple as a single microring
resonator can already exhibits a complex response, which
can be harnessed to yield memory or to nonlinear trans-
form the signal. In order to distinguish between the two
features, we isolated the microring contributions to each

of the two by providing external memory to the ridge re-
gression and by testing linear tasks. The ridge regression
succeeds in exploiting the nonlinearity of the microring
resonator, either as an activation function, supplying the
nonlinear transformation, or for memory, storing infor-
mation of the past bits into the current one. Further-
more, the single microresonator can induce both memory
and nonlinear activation function, overcoming the perfor-
mance obtained by using the inter-symbolic interference
of the input optical signal for tasks which consider the
present bit and the past one.

Finally, we observed that, especially in photonic ap-
proaches relying on super-sampling and offline analysis, it
is critical to know if the input optical signal already con-
tains distortions, created during the modulation, which
are enough for the ridge regression to solve the task. In-
deed, the optical modulator itself can distort the signal
by imprinting spurious nonlinearities and inter-symbolic
interference on the optical signal which can then be used
by the ridge regression to get the target. Consequently,
the virtual node approach requires the analysis of both
experimental signals of the reservoir: the input and the
output optical signals. Only the knowledge of both al-
lows determining if the system under test provides the
necessary nonlinearity to obtain the target. Therefore, it
is important to analyze the RB values. In other words,
solving the task with just the experimental response of
the output does not give a concrete proof of the reservoir
performance. It only allows stating that the experimental
apparatus as a whole system solves the task.
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